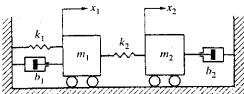
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING



ECEN 3723 Systems I Fall 2001 Midterm Exam #2

Choose any four out of five problems, Please specify					
1)	_; 2)	; 3)	; 4)	;	
Name : _					
Student ID:					
E-Mail Address:					

Problem 1: Obtain an *analogous* electrical circuits (using force-voltage analogy) for the mechanical system shown below.

Problem 2: Find X(z), the z-transform of $x(k) = k(0.25)^{-k} u(k-2)$.

Problem 3: Find x(k), the inverse z-transform of

$$X(z) = \ln\left(\frac{2z - 1}{2z}\right).$$

Problem 4:

The input x(k) = u(k) - 2u(k-2) + u(k-4) is applied to a linear time-invariant discrete-time system. The resulting response with *no initial* energy is y(k) = ku(k) - ku(k-4). Determine the transfer function H(z) of the system.

Problem 5:

A linear, time-invariant discrete-time system is described by the transfer function

$$H(z) = \frac{3z}{z^2 - 0.25} \,.$$

The output response resulting from the input x(k) = u(k) and initial conditions y[-1] and y[-2] is

$$y(k) = [(0.5)^k - 3(-0.5)^k + 4]u(k).$$

Determine the initial conditions y[-1] and y[-2].